Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693573

RESUMO

The ability to control each finger independently is an essential component of human hand dexterity. A common observation of hand function impairment after stroke is the loss of this finger individuation ability, often referred to as enslavement, i.e., the unwanted coactivation of non-intended fingers in individuated finger movements. In the previous literature, this impairment has been attributed to several factors, such as the loss of corticospinal drive, an intrusion of flexor synergy due to upregulations of the subcortical pathways, and/or biomechanical constraints. These factors may or may not be mutually exclusive and are often difficult to tease apart. It has also been suggested, based on a prevailing impression, that the intrusion of flexor synergy appears to be an exaggerated pattern of the involuntary coactivations of task-irrelevant fingers seen in a healthy hand, often referred to as a flexor bias. Most previous studies, however, were based on assessments of enslavement in a single dimension (i.e., finger flexion/extension) that coincide with the flexor bias, making it difficult to tease apart the other aforementioned factors. Here, we set out to closely examine the nature of individuated finger control and finger coactivation patterns in all dimensions. Using a novel measurement device and a 3D finger-individuation paradigm, we aim to tease apart the contributions of lower biomechanical, subcortical constraints, and top-down cortical control to these patterns in both healthy and stroke hands. For the first time, we assessed all five fingers' full capacity for individuation. Our results show that these patterns in the healthy and paretic hands present distinctly different shapes and magnitudes that are not influenced by biomechanical constraints. Those in the healthy hand presented larger angular distances that were dependent on top-down task goals, whereas those in the paretic hand presented larger Euclidean distances that arise from two dissociable factors: a loss of complexity in finger control and the dominance of an intrusion of flexor bias. These results suggest that finger individuation impairment after stroke is due to two dissociable factors: the loss of finger control complexity present in the healthy hand reflecting a top-down neural control strategy and an intrusion of flexor bias likely due to an upregulation of subcortical pathways. Our device and paradigm are demonstrated to be a promising tool to assess all aspects of the dexterous capacity of the hand.

2.
Sensors (Basel) ; 22(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36236539

RESUMO

Assessment and therapy for individuals who have hand paresis requires force sensing approaches that can measure a wide range of finger forces in multiple dimensions. Here we present a novel strain-gauge force sensor with 3 degrees of freedom (DOF) designed for use in a hand assessment and rehabilitation device. The sensor features a fiberglass printed circuit board substrate to which eight strain gauges are bonded. All circuity for the sensor is routed directly through the board, which is secured to a larger rehabilitative device via an aluminum frame. After design, the sensing package was characterized for weight, capacity, and resolution requirements. Furthermore, a test sensor was calibrated in a three-axis configuration and validated in the larger spherical workspace to understand how accurate and precise the sensor is, while the sensor has slight shortcomings with validation error, it does satisfy the precision, calibration accuracy, and fine sensing requirements in orthogonal loading, and all structural specifications are met. The sensor is therefore a great candidate for sensing technology in rehabilitation devices that assess dexterity in patients with impaired hand function.


Assuntos
Alumínio , Mãos , Dedos , Força da Mão , Humanos , Paralisia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...